A complete relativistic ionized accretion disc in Cygnus X--1
Abstract
The galactic black hole candidate Cygnus X--1 is observed to be in one of two X-ray spectral states; either the low/hard (low soft X-ray flux and a flat power law tail) or high/soft (high blackbody-like soft X-ray flux and a steep power law tail) state. The physical origin of these two states is unclear. We present here a model of an ionized accretion disc, the spectrum of which is blurred by relativistic effects, and fit it to the ASCA and Ginga data of Cygnus X--1 in both spectral states. We confirm that relativistic blurring provides a much better fit to the low/hard state data and, contrary to some previous results, find the data of both states to be consistent with an ionized thin accretion disc with a reflected fraction of unity extending to the innermost stable circular orbit around the black hole. Our model is an alternative to those which, in the low/hard state, require the accretion disc to be truncated at a few tens of Schwarzschild radii, within which there is a Thomson-thin, hot accretion flow. We suggest a mechanism that may cause the changes in spectral state.
- Publication:
-
American Astronomical Society Meeting Abstracts
- Pub Date:
- December 1999
- Bibcode:
- 1999AAS...19512604Y